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Today’s Class

• Finish up performance

• Start floating point
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All Together Now

CPU Execution 
Time

Instruction 
Count

CPI Clock Cycle 
Time= X X

instructions
cycles/instruction seconds/cycle

seconds



If we run the same program on two different 
machines with different ISAs, how do the number 
of instructions, CPI, and clock cycle time compare?

Number of instructions CPI Clock cycle time
A Same Same Same
B Same Same Different
C Same Different Different
D Different Different Different
E Different Same Same



If we run the same program on two different 
machines with the same ISA, how do the number of 

instructions, CPI, and clock cycle time compare?

Number of instructions CPI Clock cycle time
A Same Same Same
B Same Same Different
C Same Different Different
D Different Different Different
E Different Same Same



How we can measure CPU performance

• Millions of instructions per second

• Performance on benchmarks—programs designed to measure 
performance

• Performance on real programs



MIPS (not the name of the architecture)

MIPS = Millions of Instructions Per Second
          = Instruction Count 
             Execution Time * 106

          = Clock rate
              CPI * 106

• program-dependent
• deceptive



Speedup

• Often want to compare performance of one hardware or software 
version against another

Performance  =               1
                  Execution Time
Speedup (A over B) =   PerformanceA

                    PerformanceB

Speedup (A over B) =  ETB

                        ETA



Amdahl’s Law

Execution time
after improvement

=
Execution Time Affected

Amount of Improvement
Execution Time Unaffected+
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Amdahl’s Law and Parallelism
• Our program is 90% parallelizable (segment of code executable in 

parallel on multiple cores) and runs in 100 seconds with a single core.  
What is the execution time if you use 4 cores (assume no overhead for 
parallelization)?

Selection Execution Time

A 25 seconds
B 32.5 seconds
C 50 seconds
D 92.5 seconds
E None of the above

Execution time
after improvement

=
Execution Time Affected

Amount of Improvement
Execution Time Unaffected+
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Amdahl’s Law
• So what does Amdalh’s Law mean at a high level? 

Selection “BEST” message from Amdahl’s Law

A Parallel programming is critical for improving performance

B Improving serial code execution is ultimately the most 
important goal.

C Performance is strictly tied to the ability to determine which 
percentage of code is parallelizable.

D The impact of a performance improvement is limited by the 
percent of execution time affected by the improvement

E None of the above



Key Points

• Be careful how you specify “performance”

• Execution time = IC * CPI * CT

• Make the common case fast



CS History: IEEE 754-1985
• Pre-1980, different ISAs used different floating point 

implementations
• In 1976, John Palmer was managing implementing a 

floating-point coprocessor at Intel, and wanted a 
standard floating point

• He went to William Kahan, at UC Berkeley, who worked 
with Intel to develop a floating point standard 

• Kahan, Jerome Coonen and Harold Stone put together a 
public draft proposal based on Kahan’s work with Intel

• This standard was implemented first by Intel in 1980, 
and then by other manufacturers

• In  1985 it became the official IEEE standard, and stayed 
the standard until it was updated in 2008William Kahan

Photo credit: George M. Bergman, CC BY-SA 4.0 



Floating Point

• Problem:  Need a way to store non-integer values

• Including numbers with very large and very small magnitudes

• Want to do this the same way for every computer



How Humans Do This

• Scientific Notation
• 1.2825 * 102

• 2.004 * 1038

• 3.74 * 10-27

• -7.888889 * 1040

• Normalized Form
– Always multiply by power of 10
– Always 1 digit before the decimal point



How Computers Do This

• Floating Point Notation
• 1.112 × 22

• 1.01012 × 2127

• 1.1100012 × 2-126

• -1.00012 × 280

• Normalized Form
– One digit before decimal binary point
– Multiplied by power of two



101.100012 

• 101.100012 

• Integer part is 1012 =

• Fractional part is 0.100012 =

• Total is



We know 101.100012 = 5.53125. What is 
1.01100012 × 22

A. 1.37578

B. 5.53125

C. 22.0125

D. None of the above



–17.125 in binary

• Step 1. Convert integer part: 17 =

• Step 2. Convert fractional part: .125 =

• Step 3. Add integer and fractional parts: 17.125 =

• Step 4. Normalize:

• Step 5. Add sign: –17.125 =



–0.75 in Binary is

A. –1.12 × 2–1

B. –1.12 × 2–2

C. –1.0010112 × 2–1

D. –1.0010112 × 2–2

E. None of the above



1.2825 * 102 in Binary is

A. 1.0000000012 × 2-7

B. 1.0000000012 × 26

C. 1.10010000110012 × 26

D. 1.0000000012 × 27

E. None of the above



Want to Represent (-1)s * 1.x * 2e in 32 bits

• Divide up 32 bits into different sections

• 1 bit for sign s (1 = negative, 0 = nonnegative)

• 8 bits for exponent e

• 23 bits for significand 1.x



Goal:  Get the most out of 32 bits

• The first number before our decimal binary point is always 1
– 1.0001 * 24

– -1.1011 * 2-16

• We don’t need to represent it in our remaining 23 bits—it is 
implicit!



(-1)s * 1.x * 2e

• 1 bit for sign s (1 = negative, 0 = positive)

• 8 bits for exponent e

• 0 bits for implicit leading 1 (called the “hidden bit”)

• 23 bits for significand (without hidden bit)/fraction/mantissa x



1.001100101 * 27 as a single word

• 1.001100101 * 27 as a single word becomes
– Sign = 
– Exponent =
– Significand =



If we gave more bits to the exponent, and 
fewer to the fraction, we could represent

A. Fewer individual numbers

B. More individual numbers

C. Numbers with greater magnitude, but less precision

D. Numbers with smaller magnitude, but greater precision



Want To Make Comparisons Easy

• Can easily tell if number is positive or negative
– Just check MSB bit

• Exponent is in higher magnitude bits than the fraction
– Numbers with higher values will look bigger (as integers)
– 0 00000111 10000000000000000000000 = 1.1 * 27

– 0 00001000 10000000000000000000000 = 1.1 * 28



Problem with Two’s Compliment

• 0 00000111 10000000000000000000000 = 1.1 * 27

• 0 00001000 10000000000000000000000 = 1.1 * 28

• 0 11111000 10000000000000000000000 = 1.1 * 2-8

• Solution:  Get rid of negative exponents!
– We can represent 28 = 256 numbers: normal exponents -126 to 127 

and two special values for zero, infinity, (and NaN and subnormals)
– Add 127 to value of exponent to encode it, subtract 127 to decode



(-1)s * 1.x * 2e

• 1 bit for sign s (1 = negative, 0 = positive)

• 8 bits for exponent e + 127

• 0 bits for implicit leading 1 (called the “hidden bit”)

• 23 bits for significand (without hidden bit)/fraction/mantissa x



Encode 1.000000001 * 27 in 32-bit Floating Point

A.0 00000111 00000000100000000000000

B.0 00000111 10000000010000000000000

C.0 10000110 00000000100000000000000

D.0 10000110 10000000010000000000000

E. None of the above



How Can We Represent 0 in Floating Point (as 
described so far)?

A. 0 00000000 00000000000000000000000

B. 0 01111111 00000000000000000000000

C. 1 00000000 00000000000000000000000

D. More than one of the above

E. We can’t represent 0



Special Cases
Object Exponent Fraction

Zero 0 0

Infinity 255 0

NaN 255 Nonzero



Exception Events in Floating Point
• Overflow happens when a positive exponent becomes too 

large to fit in the exponent field
• Underflow happens when a negative exponent becomes too 

large (in magnitude) to fit in the exponent field

s  E (exponent)                               F (fraction)
1 bit         11 bits                                          20 bits

F (fraction continued)
32 bits

• One way to reduce the chance of underflow or overflow is to 
offer another format that has a larger exponent field
• Double precision – takes two MIPS words



Reading

• Next lecture:  Floating Point
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